
Wissensdatenbank > How To ... > Wie funktioniert der OpenID Connect Logout?

Wie funktioniert der OpenID Connect Logout?
Tolleiv Nietsch - 2026-01-22 - How To ...

OpenID Connect Logout
Bare.ID ermöglicht als Single Sign-On-Lösung eine zentrale und damit sichere und komfortable Anmeldung für
die verbundenen Applikationen. Doch wie verhält es sich mit dem Logout? Wie wird sichergestellt, dass Nutzer
von allen Applikationen auf verschiedenen Geräten und Browsern wieder ordentlich abgemeldet werden? Der
folgende Artikel erklärt die verschiedenen Mechanismen des OpenID Connect-Standards, die Bare.ID nutzt, um
einen geordneten Logout-Prozess sicherzustellen.

Single Sign-out oder Single Log-out
Den Gegenpart zum Single Sign-on (SSO) bildet der Single Sign-out oder Single Logout (SLO). Was SSO so
praktisch und sicher macht, gilt auch für SLO. Nutzer beenden mit dem Klick auf einen Abmelden-Button alle
aktiven Sessions der mit Bare.ID verbundenen Applikationen, ohne dass sie sich aktiv um den Logout von allen
einzelnen Applikationen kümmern müssen. DIe Nutzer werden zentral abgemeldet, so wie sie auch zentral
angemeldet wurden. Auf diese Weise wird sichergestellt, dass keine einzelnen aktiven Sessions verbleiben, die
als Einfallstor für Datendiebstahl oder andere Angriffe genutzt werden.

Logout in einer Applikation (RP-Initiated Logout)
Was geschieht also im Hintergrund, wenn ein Nutzer auf den “Logout-Button” in einer mit Bare.ID verbundenen
OIDC-Applikation klickt? Zunächst stellt die Applikation selbst sicher, dass die aktive Nutzersession beendet und
der lokale Sicherheitskontext des Benutzers aufgehoben wird. Der Nutzer wird aus der Applikation ausgeloggt.

Als nächstes erfolgt die Kommunikation an den OpenID-Provider. Bare.ID stellt einen Logout-Endpunkt namens
end_session_endpoint zur Verfügung. Die Applikation stellt eine Anfrage (Request) zum Logout an die
hinterlegte URL. Ein solcher Logout-Request sieht dann z.B. so aus:

Dieser Logout-Request beinhaltet folgende Parameter:

id_token_hint (empfohlen): Der zuvor von Bare.ID bereitgestellte ID-Token, um der Applikation die
Identität des Nutzers und der aktiven Session mitzuteilen.

post_logout_redirect_uri (optional): Es kann eine URL mitgeliefert werden, zu der umgeleitet werden
soll, nachdem die Abmeldung durchgeführt wurde. Die URL muss zuvor bei Bare.ID hinterlegt worden
sein.

state (optional): Ein Status kann in Form eines zufälligen Strings mitgeliefert werden. Dieser wird dann
durch Bare.ID in den Callback zu post_logout_redirect_uri aufgenommen. Auf diese Weise kann
die Applikation den Status zwischen der Abmeldeanfrage und dem Callback überwachen.

Weitere Informationen zum OpenID Connect RP-Initiated Logout finden sich in der Spezifikation
unter https://openid.net/specs/openid-connect-rpinitiated-1_0.html.

Bare.ID ist jetzt informiert, dass der Nutzer sich abmelden möchte und kann darauf reagieren. Ist der
id_token_hint Nach der Weiterleitung zum Logout-Endpunkt wird dem Nutzer eine Abmeldeseite angezeigt

https://support.bare.id/de
https://support.bare.id/de/kb
https://support.bare.id/de/kb/how-to
https://support.bare.id/de/kb/articles/wie-funktioniert-der-openid-connect-logout
https://support.bare.id/de/kb/how-to
https://openid.net/specs/openid-connect-rpinitiated-1_0.html


und gefragt, ob er sich von Bare.ID und somit zentral von allen verbundenen Applikationen abmelden möchte.

Klickt der Nutzer auf den “Abmelden”-Button, müssen alle verbundenen Applikationen mit aktiven Sessions für
diesen Nutzer informiert werden, dass die Sessions beendet und der Nutzer abgemeldet werden muss. Hierfür
bietet der OpenID Connect-Standard verschiedene Mechanismen an, die von Bare.ID unterstützt werden:

Session Management
Das OpenID Connect Session Management definiert einen Mechanismus, der es einer verbundenen Applikation
ermöglicht, den Login-Status eines Nutzers bei Bare.ID ständig zu überwachen. Auf diese Weise können Nutzer
von der Applikation abgemeldet werden, sobald sie sich zentral bei Bare.ID ausloggen. Dabei wird, wie auch
beim Front-Channel-Logout, eine reine Front-Channel-Kommunikation verwendet.

Meldet sich ein Nutzer über Bare.ID bei einer Applikation an, wird in der Authentication Response auch der
session_state-Parameter an die Applikation übermittelt. Der darin enthaltene String wurde zuvor
serverseitig errechnet und repräsentiert den Login-Status des Nutzers auf der Seite von Bare.ID. Derselbe
String wird nun auch von der Applikation berechnet und kann regelmäßig mit dem Wert aus dem erhaltenen
session_state-Parameter verglichen werden.

Um die Menge an übertragenen Daten dabei gering zu halten, rendern sowohl Bare.ID, als auch Applikationen,
die Session Management unterstützen, einen versteckten iFrame. Der applikationsseitige iFrame muss die
eindeutige ID des Bare.ID-seitigen iFrames kennen und kann dann die Daten, bestehend aus Client ID und
Session State, von dort per POST-Message anfragen. Dabei dürfen ausschließlich Daten, die gesichert aus dem
Bare.ID-iFrame stammen, verarbeitet werden, um Cross-Site-Scripting-Attacken zu verhindern.

Ändert sich der Session State also auf Seiten von Bare.ID, weil der Nutzer sich zentral abgemeldet hat oder die
Session abgelaufen ist, können alle Applikationen darauf reagieren und den Nutzer auf ihrer Seite ausloggen.

Weitere Informationen zum OpenID Connect Session Management finden sich in der
Spezifikation unter https://openid.net/specs/openid-connect-session-1_0.html.

Front-Channel-Logout
Auch der Front-Channel-Logout-Mechanismus wird vom Browser durchgeführt. Im Gegensatz zum Session
Management wird dabei aber kein iFrame auf Seiten der Applikationen benötigt. Es muss lediglich der Endpunkt
frontchannel_logout_uri für eine Logout-URI registriert werden, die vom Browser aufgerufen werden
kann, um einen Logout des Nutzers für die Applikation durchzuführen.

Bare.ID rendert für jede Applikation, die eine aktive Session für einen Nutzer von Bare.ID hat und die den Front-
Channel-Logout-Mechanismus unterstützt, einen separaten iFrame mit der entsprechenden Logout-URI. Meldet
sich ein Nutzer von Bare.ID ab, kann er durch parallelen Aufruf aller Logout-URIs per HTTP-Request von allen
verbundenen Applikationen gleichzeitig abgemeldet werden.

Die Applikation löscht bei Aufruf der Logout-URI alle relevanten Cookies und leert den lokalen Speicher. Wird
die Applikation jetzt vom Nutzer aufgerufen, wird im Browser die erneute Anmeldung des Nutzers verlangt.

Weitere Informationen zum OpenID Connect Session Management finden sich in der
Spezifikation unter https://openid.net/specs/openid-connect-frontchannel-1_0.html.

https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html


Back-Channel-Logout
Front-Channel-Logout und Sessions-Management nutzen Front-Channel-Kommunikation und benötigen eine
aktive Session der verbundenen Applikation im geöffneten Browser des Nutzers. Um einen Nutzer von allen
Applikationen abmelden zu können, ohne dass dieser einen Browser öffnen muss, stellt der OpenID Connect-
Standard den Back-Channel-Logout zur Verfügung. Er spezifiziert eine Server-zu-Server-Kommunikation für den
Logout-Request und ist der zuverlässigste Logout-Mechanismus, da er die Unsicherheiten durch einen Nutzer-
Browser umgeht.

Loggt der Nutzer sich bei Bare.ID aus, wird ein Logout-Request an den Logout-Endpunkt aller Applikation mit
einer aktiven Session gesendet. Dieser Request beinhaltet einen Logout-Token (JSON Web Token JWT), ähnlich
dem ID-Token. Die Parameter des Logout-Tokens beinhalten u.a. eine eindeutige Session-ID, um die zu
beendende Session eindeutig identifizieren zu können. Die Applikation validiert den Token, führt den Logout aus
und liefert im Erfolgsfall einen HTTP-Status 200 zurück. Refresh-Token der aktiven Sessions verlieren bei
Bare.ID ihre Gültigkeit.

Weitere Informationen zum OpenID Connect Session Management finden sich in der
Spezifikation unter https://openid.net/specs/openid-connect-backchannel-1_0.html.

https://openid.net/specs/openid-connect-backchannel-1_0.html

